If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2x2 + 4x + -0.2 = 0 Reorder the terms: -0.2 + 4x + 2x2 = 0 Solving -0.2 + 4x + 2x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 2 the coefficient of the squared term: Divide each side by '2'. -0.1 + 2x + x2 = 0 Move the constant term to the right: Add '0.1' to each side of the equation. -0.1 + 2x + 0.1 + x2 = 0 + 0.1 Reorder the terms: -0.1 + 0.1 + 2x + x2 = 0 + 0.1 Combine like terms: -0.1 + 0.1 = 0.0 0.0 + 2x + x2 = 0 + 0.1 2x + x2 = 0 + 0.1 Combine like terms: 0 + 0.1 = 0.1 2x + x2 = 0.1 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 0.1 + 1 Reorder the terms: 1 + 2x + x2 = 0.1 + 1 Combine like terms: 0.1 + 1 = 1.1 1 + 2x + x2 = 1.1 Factor a perfect square on the left side: (x + 1)(x + 1) = 1.1 Calculate the square root of the right side: 1.048808848 Break this problem into two subproblems by setting (x + 1) equal to 1.048808848 and -1.048808848.Subproblem 1
x + 1 = 1.048808848 Simplifying x + 1 = 1.048808848 Reorder the terms: 1 + x = 1.048808848 Solving 1 + x = 1.048808848 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.048808848 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.048808848 + -1 x = 1.048808848 + -1 Combine like terms: 1.048808848 + -1 = 0.048808848 x = 0.048808848 Simplifying x = 0.048808848Subproblem 2
x + 1 = -1.048808848 Simplifying x + 1 = -1.048808848 Reorder the terms: 1 + x = -1.048808848 Solving 1 + x = -1.048808848 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.048808848 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.048808848 + -1 x = -1.048808848 + -1 Combine like terms: -1.048808848 + -1 = -2.048808848 x = -2.048808848 Simplifying x = -2.048808848Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.048808848, -2.048808848}
| 25x=5(x+8) | | x-5/6=10/15 | | x+117=110 | | y=2.25x | | 3a-2b=60 | | 3a-4a+2b-2b= | | 15(3c-3)=4c-9 | | 3nxa=32 | | w7/3 | | 15*x/5=6 | | 1/3(m-1)=23-3r | | 2x-4=z(2x-y) | | l^2-4l=32 | | -5-6=-8+x | | 2(3a+3)= | | m+13=27 | | 3x-7=5x-29 | | -x+29=230 | | 5(z-1)=4(z+3) | | 14x+12=68 | | 16x^3+4x=0 | | 12x+6=-3 | | -3x-x+8+5x-2=10 | | -7(x+5)-14=11+3 | | x-63=150 | | (a-4)times(a+5)= | | 16x^3+4=0 | | 3(t-1)=9+c | | 7(3x+1)=-1 | | 201=280-u | | 3a+4a+2b+4b= | | 4(2)-5y=2 |